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Abstract
Performance evaluation of cloud data-centers has drawn considerable attention from academy and industry. In this
study, we present an analytical approach to the performance analysis of Infrastructure-as-a-Service cloud data-
centers with unreliable task executions and resubmissions of unsuccessful tasks. Several performance metrics are
considered and analyzed under variable load intensities, failure frequencies, multiplexing abilities, and service
intensities. We also conduct a case study based on a real-world cloud data-center and employ a confidence interval
check to validate the correctness of the proposed model.
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1. INTRODUCTION

Cloud data-centers are key enablers for the scalability of
the cloud platform. Cloud computing relies on data-centers
to deliver expected services. The widespread adoption of the
cloud computing paradigm mandates the exponential growth
in the data-centers' computational, network, and storage
resources. Managing the computational resources to deliver
specified performance [1] is among the key challenges.

Expected request response time which decides system
responsiveness and request rejection rate which determines
users' satisfaction are usually considered as the most
important performance metrics to evaluate a service system.
As will be discussed later in this paper, cloud data-centers
are usually subject to errors/faults, and error/failure-
handling activities could have strong impact on final
performance. Due to the difficulties with building
monolithic models capable of capturing related factors,
measurement-based approaches are frequently used [2-4].
However, these approaches are intractable due to exhaustive
experimentations. Therefore, their value is limited.
Comprehensive analytical performance models are more
preferable in this situation. Although some other analytical
models [5-8] are proposed, those works are limited mainly
because they assume the system failure-free to simplify the
performance/QoS calculation.

This paper focuses on analytical performance analysis of
IaaS cloud data-centers with request rejection and
resubmission. For this purpose, a stochastic model is
proposed and product-form expressions of multiple
performance metrics are derived. We validate the model by
experiment based on an actual IaaS cloud and the results
indicate our model is trustable.

IaaS cloud is a form of cloud computing that provides
virtualized computing resources over the Internet. The cloud
management unit of an IaaS data-center maintains a request
buffer for consecutively-arrived requests, which can be

usually described by an arrival rate, λ. The capacity of such
buffer, denoted by c, can be specified before using (e.g., the
capacity limit can be specified through the FRAME_SIZE
property in OpenStack). Requests arrived either leave by
rate θ or are resubmitted by rate 1-θ when the capacity limit
is reached. For the performance evaluation purpose, we are
interested in knowing request response time, i.e., the
expected interval time between request arrival and the
corresponding VM ready for execution (e.g., the time of
INSTANCE_SPAWNED defined in OpenStack).

As shown by Fig. 1, VM instantiation requires multiple
steps and interferences with various services and
components. Averaged speed (or process rate) of the cloud
management unit to spawn a VM, denoted by μ, can be
obtained by the reciprocal of averaged instantiation times,
e.g., intervals between INSTANCE_BUILDING times and
INSTANCE_SPAWNED times in OpenStack. With the help
of VM multiplexing [9] mechanism supported by today's
multi-core/multi-threading technologies, multiple VMs can
be instantiated on a same PM. The maximum number of
VMs that can be instantiated on a PM, denoted by m, is
usually bounded. Note that high multiplexing level is not
always welcomed because VM interference may cause
performance and reliability degradation.
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Fig. 1: Sequence chart of VM instantiation on OpenStack

Fig. 2: The cloud provisioning control-flow of an IaaS data-center with task errors/faults

Moreover, Fig. 1 suggests potential of unsuccessful VM
instantiation because interactions with local or remote
services and components are often error/failure-prone.

Errors/failures can strongly impact cloud performance
due to the overhead needed to conduct
compensation/transactional-rollback activities and re-
instantiate the faulty request. Based on the above
discussions, an abstract control-flow model of VM
instantiation on unreliable IaaS cloud data-center is
illustrated in Fig. 2. It abstracts implementation details of
IaaS cloud paradigm while preserving the control-flow
contents useful for performance analysis in a context of
queueing-networks. Its objective is to derive the quantitative
effects of varying request arrival rates, VM instantiation
rates, resource scale, and error intensity on cloud
performance. The system under study is consequently
mapped into an instance of queuing network problems
solved in the following section.

2. STOCHASTIC ANALYSIS
Let N(t)=n mean that the number of tasks waiting or

being instantiated is n at time t, M(t)=m mean that the
number of requests being resubmitted m, and

X(t)=(N(t),M(t)) denote the system state at time t, the
resulting state space is therefore E∈{0,1,...,k}×{0,1,..., ∞}.
Since the inter-arrival time, VM instantiation time, and
resubmission processing time are all exponentially
distributed, X(t) is a Markovian process on state space E.

Based on the state transition chart, the corresponding
transition-rate matrix, Q, can be derived as:

(1)

It is easy to see that X(t) is irreducible and non-
periodical. Let πi,j(t) denote the probability that the
Markovian process is at state (k,j) and πi,j=limt→∞ πi,j(t), we
have that πi,j can be calculated as below if the stationary
distribution exists:
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(2)
where

(3)

It is easy to see that ρl decreases with l. Consequently, there
exists u∈ N+ such that ρu< l and

(4)

The above derivation leads to

(5)

and therefore the stationary distribution exists according to
the limit theorems of birth-death processes.

Since the stationary distribution exists, we have the
steady-state probabilities of each state as:

(6)

Since the stationary distribution exists, we also have:

(7)
From (2) we have:

(8)

Combining the above equation with (7), we have:

(9)

which suggests that Ak= Ak and Bk= Bk.
According to (6) and (9), we have:

(10)

where T0 is a basic solution of T0(VkAk+Vk-1C)=0 and πi,j is
subject to:

(11)

where ω1 is a column vector with its dimension being g+1
and is equal to (0,..,0,1)T.
and, Vk is subject to:

(12)

W is calculated as:

(13)

From (10), we have:

(14)

and similarly:
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(15)
Consequently, we can finally have:

(16)

and the product form solution of Ti can be obtained by using
this equation.

Combining (16) with (2), we can obtain the solutions of
steady-state probabilities of all states, πi,j. Note that a similar
derivation skill can be found in [10].

3. PERFORMANCE RESULTS
We consider the following as the performance metrics: 1)

Expected request response time, T; and 2) Request rejection
rate, R.

As suggested by Fig. 2, T denotes the expected interval
between request Arrival and the moment of the
corresponding VM being instantiated and ready for
execution. Response time is a frequently used measure of
efficiency and responsiveness of computer systems. Lower
response time also allows for higher system reliability since
in an unreliable system failures/errors are more likely to
happen when a longer response time is needed.

To analyze T, we first have to calculate the probability
that a cloud task enters the resubmission state, Pr:

(17)

The expected number of retrials of a cloud task, Nr, can be
obtained as:

(18)
The expected time for a task to wait before it is resubmitted
to the arrival task flow, Tr, can therefore be calculated as:

(19)

where P0 denotes the probability that no task being
resubmitted:

(20)

and λ' is the rate of resubmission flow into the arrival task
flow:

(21)

where λ' can be calculated as:

(22)

The expected total time for a task to spend before its final
successful trial on condition that it is not rejected, Tb, can
therefore be obtained as:

(23)

where Tv is calculated as:

(24)

ρ=λ''/(e×μ) and

(25)

Finally, we have T as:

(26)

Request rejection rate, R, can be expressed as the ratio of the
number of rejected tasks, due to the capacity constraint or
PM failures/errors, to the total number of requests submitted
to the IaaS data-center.
For user satisfaction, a low rejection rate is always
preferable.

(27)
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Fig. 3: The architectural view of the Course-Management and Assignment-Submission cloud

4. CASE STUDY AND MODEL VALIDATION
For the model validation purpose, we conduct a case

study on a real-world cloud data-center, the Course-
Management and Assignment-Submission cloud for
undergraduate students of ChongQing University (CQU).Its
protocol and architectural views are illustrated in Fig. 3

The cloud system is based on a symmetric server group
of 6 Sugon I450 servers (4-CPU Intel Xeon 5506/128G
RAM/15TB RAID but only 3-CPU/8G RAM/4TB RAID is
assigned as cloud users' space). Each PM can therefore
concurrently support no more than 32 VMs. The capacity of
the waiting buffer for requests c is 16. The faulty rate f is
0.13-0.79%. The occurrence rate of impatient wait is 11.3%
when the waiting buffer is fully occupied, meaning that
θ=0.113.

As shown in Table 1, the logfile covers time-stamps of
each request's arrival and departure time in consecutive
periods of 60 minutes from 09:00 to 22:00, Feb. 26, 2016.

For the model validation purpose, we derive 90%
confidence intervals from the experimental performance
data. By using a normal distribution as the fitting function,
we derive the confidence interval of T as:

(28)

where sdv means standard deviation, z the z-distribution,
and α the confidence level.
Finally, the confidence interval of R is also based on a
Bernoulli distribution as the fitting function:

(29)

Fig. 4 implies the correctness of the proposed theoretical
model.

Fig. 5 illustrates performance changes with variations in
request arrival rates when
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Fig. 4: Validation through confidence interval check

Fig. 5: Analytical performance results vs. arrival rate at different number of PMs

Fig. 6: Analytical performance results vs. VM instantiation rate at different number of PMs

m=2, c=8, μ=0.00125, μ'=0.01, g=4, f=0.08, θ=0.1.
Increasing arrival rate leads to higher expected response
time and rejection rate. IaaS cloud maintains a small number
of PMs. It can be seen that clouds with more PMs are more
resistant to performance loss when arrival rate increases.

Fig. 6 illustrates performance changes with variations in
VM instantiation rates when m=2, c=8, μ'=0.01, g=4,
f=0.08, θ=0.1, λ=0.01. Increasing VM instantiation rate

leads to lower expected response time and rejection rate. It
can also be seen that clouds with fewer PMs are more
sensitive to performance improvements when VM
instantiation rate increases.

Fig. 7 illustrates performance changes with variations in
buffer sizes. The growth of such size leads to lower
expected response time and rejection rate. Such
performance improvements are strong when the size is small.
It is also seen that clouds with more PMs always have
higher performance.
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Fig. 7: Analytical performance results vs. request buffer size at different number of PMs

5. CONCLUSIONS AND FURTHER STUDIES
A comprehensive performance-determination model is

proposed in this work for failure/error-prone IaaS cloud
data-centers with request rejection and resubmission. We
consider expected request response time and request
rejection as the performance metrics and study the impact of
varying system conditions (error intensity, VM instantiation
rate, multiplexing ability, request load, etc.) on cloud
performance. For the model validation purpose, we conduct
a confidence interval check based on performance test
results of a real-world cloud application.
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